Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose?
نویسندگان
چکیده
Paracetamol (acetaminophen, N-acetyl-p-aminophenol, 4-hydroxyacetanilide) is the most common cause of acute liver failure in developed countries. There are a number of factors which potentially impact on the risk of an individual developing hepatotoxicity following an acute paracetamol overdose. These include the dose of paracetamol ingested, time to presentation, decreased liver glutathione, and induction of cytochrome P450 (CYP) isoenzymes responsible for the metabolism of paracetamol to its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI). In this paper, we review the currently published literature to determine whether induction of relevant CYP isoenzymes is a risk factor for hepatotoxicity in patients with acute paracetamol overdose. Animal and human in vitro studies have shown that the CYP isoenzyme responsible for the majority of human biotransformation of paracetamol to NAPQI is CYP2E1 at both therapeutic and toxic doses of paracetamol. Current UK treatment guidelines suggest that patients who use a number of drugs therapeutically should be treated as "high-risk" after paracetamol overdose. However, based on our review of the available literature, it appears that the only drugs for which there is evidence of the potential for an increased risk of hepatotoxicity associated with paracetamol overdose are phenobarbital, primidone, isoniazid, and perhaps St John's wort. There is no evidence that other drugs often quoted as increasing risk, such as carbamazepine, phenytoin, primidone, rifampicin, rifabutin, efavirenz, or nevirapine, should be considered risk factors for hepatotoxicity in patients presenting with acute paracetamol overdose.
منابع مشابه
Paracetamol, alcohol and the liver.
It is claimed that chronic alcoholics are at increased risk of paracetamol (acetaminophen) hepatotoxicity not only following overdosage but also with its therapeutic use. Increased susceptibility is supposed to be due to induction of liver microsomal enzymes by ethanol with increased formation of the toxic metabolite of paracetamol. However, the clinical evidence in support of these claims is a...
متن کاملInvestigating the Lethal Effects of Lead Chloride (PbCl2) on Blood Indices, Liver Enzymes and Evaluation on Cytochrome P450 Gene Expression in Common Carp (Cyprinus carpio)
The aim of this study was to investigate the sub-lethal effects Lead Chloride (PbCl2) on blood indices, liver enzymes, cytochrome P450 gene expression in common carp. For this purpose, Fish with a mean weight of 7 33±0.33 g were prepared and divided into 3 treatments and a control group and exposed to effective concentrations (0.05, 0.15, 0.25 mg / l) of sublethal toxicity for a period of 14 da...
متن کاملA review of the evidence concerning hepatic glutathione depletion and susceptibility to hepatotoxicity after paracetamol overdose
Paracetamol (acetaminophen) poisoning is common throughout the world. The management of nonstaggered (acute) paracetamol overdose is based on the plasma paracetamol concentration plotted on a treatment nomogram. In the UK there are two treatment lines on this nomogram, with the lower treatment line used for individuals felt to be at 'high risk' of paracetamol-related hepatotoxicity either as a ...
متن کاملIn vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa.
Acetaminophen overdose causes toxicity in liver and extrahepatic tissues. Although it is well established that cytochrome P450 enzymes play a critical role in the metabolic activation of acetaminophen, it is not yet clear whether acetaminophen toxicity in extrahepatic tissues is a consequence of hepatic biotransformation. The aim of this study was to determine whether extrahepatic acetaminophen...
متن کاملCo-administration of fresh grape fruit juice (GFJ) and bergamottin prevented paracetamol induced hepatotoxicity after paracetamol overdose in rats
The aim of this study was to evaluate small doses of known cytochrome P450 enzyme inhibitors, grapefruit juice (GFJ) and one of its components, bergamottin (BGT), for the prevention of paracetamol (PAR)-induced hepatotoxicity after overdose in rats. Six groups of 15 Sprague Dawley (SD) rats each were treated with single oral doses of either saline, PAR only 1725 mg/kg, PAR + GFJ low dose (2 ml)...
متن کامل